
Numerical computat ion of turbulent f low 
through a square-sectioned 90 ° bend 
H. lacovides, B. E. Launder, and P. A. Loizou* 
Finite-volume, semi-elliptic computations are reported of the three-dimensional flow 
around a 90 ° square-sectioned bend for which detailed laser-Doppler measurements have 
been reported b y T a y l o r e t a l .  1 While the standard k-e eddy-viscosity model has been used in 
the main flow region, in place of the usual "wall functions," the mixing-length hypothesis 
has been employed to resolve the flow in the layer immediately adjacent to the wall. The 
scheme is successful in predicting the details of the primary and secondary flow fields both 
within the bend and downstream thereof. 
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I n t r o d u c t i o n  

The flow in bends of rectangular cross section provides a well- 
defined, strongly three-dimensional flow field with close generic 
similarities with those arising in turbomachine blade passages. 
Extensive LDA studies of the development of flow around 90 ° 
bends of uniform cross section have been reported by the Fluids 
Section at Imperial College (Taylor et al., 1 Humphrey et al., 2 
Enayet et al., a whereas Chang et al. 4 have reported 
corresponding measurements for flow in a 180 ° U-bend. 

The last of these experiments has been the subject of several 
attempts at numerical simulation. The initial efforts were so 
unsuccessful that by 90 ° around the bend, the computed and 
measured flow fields bore little resemblance to one another 
(Chang et al., ~ Johnson, 6 Birch7). Recently, however, Choi et 

al. 8 obtained results for that flow, using the standard k-e model, 
that, though still exhibiting significant differences from the 
experiment at 90 °, represented a marked improvement on the 
results of earlier studies. The improvement stemmed principally 
from the abandonment of "wall functions" for handling the 
region immediately adjacent to the wall. Instead of these overall 
"resistance" formulas, a sufficiently fine grid was used near the 
walls to resolve the changeover from turbulent to viscous 
transport by way of a low Reynolds number turbulence model. A 
version of Prandtl's mixing-length hypothesis was used to 
approximate the turbulent transport processes across this 
sublayer; despite the simplicity of this prescription, it has been 
used successfully in several studies of turbulent flow near 
spinning discs and cylinders, 9'~° where, as in the bend flow, the 
ratio of secondary to primary velocities changes rapidly across 
the viscosity-affected sublayer. 

The 180 ° bend flow of Chang et al. provided a very severe test 
of the computational procedure, but it was arguably not one 
that was especially close to the flows arising in blade passages. 
This was because the flow was nearly fully developed at entry to 
the bend, a situation giving rise to a very strong, multicellular 
secondary flow. The experiment reported by Taylor I provided a 
more directly relevant test flow for blading situations: The 
boundary layers at entry to the 90 ° bend were only some 15 ~ of 
the passage dimension, whereas the ratio of mean radius of 
curvature to hydraulic diameter of 2.3:1 was 50~o less than in 
Chang. '~ Kreskovsky et al. ~ have, in fact, already reported 
computations of this flow employing a simple mean-field closure 
for the Reynolds stresses. The level of agreement achieved was 
fairly good, though there was insufficient growth of the 
boundary layer on the convex inner surface toward the end of 
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the bend where the flow on that surface encountered a 
substantial adverse pressure gradient. This paper addresses 
whether the two-equation turbulent transport model used in 
Choi 8 would lead to a marked improvement in the numerical 
simulation of Taylor's experiment over that previously 
obtained. 

Numer ica l  and physical  model  

The numerical solver employed for the computations is of finite- 
volume type. It solves on the usual staggered velocity-pressure 
grid the discretized, three-dimensional Reynolds equations in 
cylindrical polar coordinates. A semi-elliptic solution strategy, 
Pratap and Spalding, 12 is adopted in which only the pressure 
field is stored over the whole domain. Other variables are held 
only on two adjacent planes, their values being continually 
overwritten as successive iterative upstream-downstream 
sweeps are made around the bend. The methodology is broadly 
patterned on the TEACH family of computer programs 
developed by Gosman at Imperial College.~ 3 The main elements 
of the procedure have been reported in several earlier 
publications 8'14 and in greater detail by Iacovides. ~5 Here, 
therefore, we note simply that 

• The nondiffusive QUICK scheme 16 is used for discretizing 
convective transport in the cross section of the duct. 

• Both the SIMPLER 17 and SIMPLE 18 algorithms are used 
at different stages of the solution for correcting the pressure 
field to bring compliance with continuity (the former 
during the initial stages when residuals are large). 

• While initially finite-difference coefficients are evaluated 
from flow data at the upstream plane, as convergence is 
approached first one then two in-plane iterations are made. 
This important step was not included in the original 
computations of Pratap, ~1 who confined attention to bends 
of larger radius ratio. 

• While the standard k-e eddy viscosity model of 
turbulence ~9 is applied over nearly all the flow, within a 
band of thickness 0.04D H adjacent to the walls, the 
turbulent viscosity is obtained from Van Driest's 2° form of 
the mixing-length hypothesis generalized for three- 
dimensional flows: 

•2 [-8Ui ]/SU i 8Uj~71/2 

The mixing length [m is given by 

: 0 4'9"  I '  --ex  
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where Xn denotes the distance of a point from the (nearest) 
wall, and rw is the local (resultant) wall  shear stress at the 
closest point on the wall. 

In matching this model to the k-e  EVM at the edge of this 
sublayer, the values of k and e were fixed by requiring that 
the turbulence energy dissipation and production rates be 
in balance and that the turbulent viscosities given by the 
two models be equal. 

Unfortunately, one practice that proved very beneficial to our 
earlier computations in c i rcu lar  sectioned bends had to be 
discarded in these square bend computations. For  the circular 
bends, the small variation in static pressure across the near-wall 
sublayer was neglected,14 which meant that the fine grid needed 
to resolve the changeover from turbulent to viscous transport 
could be included without significantly increasing the overall 
core demand (which was mainly fixed by the size of the three- 
dimensional pressure array). Although several variants of this 
practice were explored, none could be found that was 
satisfactory for ducts of square cross section, the problem being 
that, in the corners, pressure gradients normal the wall are 
necessarily large to make the strong secondary flow change 
direction by 90 ° . Fortunately, the growth in computer memory 
available has meant sufficient core has been accessible to extend 
the pressure domain over the near-wall sublayer as well as the 
fully turbulent part of the flow. 

Computational details and results 

The computations reported have used a 25 × 47 mesh to cover 
the half cross section of the duct between the symmetry plane 
and the end wall (Figure 1). Eight nodes have been assigned to 
the near-wall regions, where the mixing-length hypothesis is 
used. Over the remainder of the cross section, internode spacing 
increased smoothly with distance from the wall. The 
nonuniformity of the mesh is greater than that used by Choi 8 to 
compute the 180 ° bend with fully developed entry conditions. 
The thinner inlet boundary layers of the present flow demanded 
that a greater proportion of the nodes be placed near the walls to 
properly resolve the growth of the boundary layer during the 
initial stages of development. 

Computations began 2.5 diameters upstream of the bend 
using profiles of mean velocity and turbulence variables (k and e) 
generated in a separate computation of developing turbulent 
flow in a straight duct. The precise boundary layer thickness at 
the -2 .5D H position was not known, but computations were 
initiated with slightly different inlet profiles until optimum 
agreement was achieved with the measured streamwise velocity 
profile at 0.25 diameters upstream of the bend. In the 
calculations, dependent variables were evaluated on 135 cross- 
sectional planes, 18 of which were upstream of the bend, 40 
downstream, and 77 in the bend itself. 

Over the first 30 ° of the bend, viscous effects are fairly weak, 
boundary layers remain thin, and computations of Kreskovsky 
e t  al.  11 achieve just as satisfactory agreement with the 
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Figure 1 Distribution of mesh lines over the computational domain 

experimental data of Taylor et  al.  1 as do the present ones. 
However, by 60 ° (Figure 2), significant differences have begun to 
develop near the inside of the bend (r* = 0.9), where the present 
model predicts a stronger secondary velocity, V, and a primary 
(streamwise) velocity that reaches its maximum value at x* = 0.3 
rather than at the symmetry plane. Both features are in accord 
with the experimental data. At 77.5 °, similar but larger 
differences are evident between the two computations (Figure 
3), and again the present computations closely agree with the 
measured profiles. Indeed, consistently better agreement with 
the measured primary velocity occurs for each of five constant- 
r* traverse lines along which the data were gathered. Figure 4 
presents for the same station axial velocity contours and 
secondary flow vectors. These show how the secondary flow 
current causes the streamwise velocity along r*= 0.9 to be so 
low in the vicinity of the symmetry plane. In the corner of the 
convex wall, a small secondary recirculation is just visible, 
though it has no perceptible effect on the streamwise flow 
pattern. 

No further results were shown by Kreskovsky et  al.,  11 but 
since experimental data are reported at 0.25 and 2.5 hydraulic 
diameters downstream of the bend, these are compared with the 
present computations in Figures 5 and 6. At both positions, 
agreement with experiment is extremely close, the slowly 
decaying secondary flow downstream of the bend being 
particularly well predicted. A further view of the secondary flow 
at 2.5D H is provided in Figure 7, where the secondary flow 
vectors are shown alongside contours of axial velocity. Because 
the secondary flow persists downstream of the bend, the 
streamwise velocity contours undergo continued deformation 
to the convoluted pattern of Figure 7. The corner secondary 
recirculation noted at 77.5 ° has grown somewhat but remains 
an essentially passive feature of the flow. A major and probably 
crucial difference between this flow and the 180 ° bend computed 
with less sucess by Choi e t  al.  8 is that, in the latter case, the 
secondary motion (according to the predictions) breaks down 
into multiple counter-rotating eddies (Figure 8); it is likely that in 
the actual experiment the secondary flow pattern was even more 
complex. 

Notation 

D H Hydraulic diameter, defined as 4 x cross-sectional 
area/wetted perimeter 

k Turbulent kinetic energy 

. .  . / R o u t - r  
r* Normalized radial cooramate = /  - -  J 

\Rou t - Rin / 
Rin Inner side wall radius of curvature 
Rou t Outer side wall radius of curvature 
V Radial direction velocity component 

W Streamwise direction velocity component 
Wb Bulk fluid velocity in streamwise direction 

x* Spanwise coordinate normalized by D~ 
2 

x. Distance of a point from nearest wall 
e Turbulence energy dissipation rate 
tg m Mixing length 
v t Turbulent viscosity 
p Density of fluid 
r w Wall shear stress 
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Figure 2 Mean velocity profiles at 60 ° around the bend: (a) streamwise velocity profiles; (b) radial velocity profiles 
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Figure 4 Computed axial velocity contours (W/Wb) and secondary 
f low vectors at 77.5* around the bend 

Inside 

The computed variation of wall friction is shown in Figure 9 
along four lines: the lines of symmetry on the concave and 
convex walls and the lines on the same walls at a distance 0.03DH 
from the end wall. On the concave surface, the friction factor 
drops abruptly just ahead of the bend because of the flow 
shifting to the inside. The consequent adverse pressure gradient 
on the outside of the bend almost produces reverse flow in the 
corner (line D). Just before outlet, it is the convex wall boundary 
layer that suffers an adverse pressure gradient, and here it is the 
boundary layer on the symmetry plane that comes perilously 
close to separation. The reason the risk of separation at outlet is 
greater at the midplane than in the corner is that it is there that 
the secondary flow "dumps" the fluid with the lowest axial 
momentum. It appears that the choice of bend radius ratio has 
been well chosen so as just to avoid separation at both inlet and 
exit. 

C o n c l u s i o n  

Numerical simulation of the strongly three-dimensional 
turbulent shear flow arising in flow around a 90 ° bend of small 
radius ratio has achieved excellent agreement with experiment. 
The turbulent stresses have been approximated by the standard 
k-e  EVM over most of the flow, and the mixing-length 
hypothesis is used to extend computations across the 
semiturbulent and viscous sublayers to the wall. This hybrid 
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Figure 7 Computed axial velocity contours (W/Wb) and secondary 
flow vectors at 2.5D H downstream of the bend 

Inside 

model achieves significantly better agreement than when a mean 
field closure is used over the whole field, and it almost certainly 
does better than matching the k-e model to wall functions. 
Although experience indicates that a second-moment closure 
should allow more reliable predictions at the expense of 
(considerably) more computational effort, in many blading 
situations where the shear layers remain fairly thin it is doubtful 
whether the additional effort could be justified. 
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Figure 8 Axial velocity contours and secondary f low vectors in 
180 ° bend with thick inlet boundary layers (from Choi et al.) 
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Figure 9 Development of wall friction coefficient around the bend 
along four reference lines 
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